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Propagation of waves of finite amplitude along a 
duct of non-uniform cross-section 

By JAN ROSCISZEWSKI 
Pierce Hall, Harvard University 

(Received 15 August 1959 and in revised form 16 February 1960) 

This paper is concerned with the propagation of a simple wave along a duct of 
initially constant and then slowly varying cross-section. The equations of motion 
are linearized in the deviations from the simple wave solution. The solution for 
the propagation of a centred simple rarefaction wave is obtained in closed form 
and compared with the results of step-by-step calculations. The results are also 
found to be good when the area change is not small. Some remarks on boundary- 
layer influence are included. 

1. Introduction 
I n  this paper, the method of small parameters is applied to the system of partial 

differential equations which govern unsteady flow through ducts of variable 
cross-section (see Rudinger 1950) 

where 

are the Riemann invariants, V is the velocity of flow, a the velocity of sound, 
A the cross-section area of the duct, S the specific entropy, a and B the charac- 
teristic directions, cp the specific heat at constant pressure, and Fl, Fz the coeffi- 
cients representing the influence of the boundary layer. 

2. A centred rarefaction wave in a duct of slowly varying cross-section 
Neglecting boundary-layer influence, assuming that 

A = A(x,t)  = AO+€A(”’t), 

where eA < AO, and representing all parameters as the sum of parameters corre- 
sponding to a simple wave and disturbances caused by area change; we write 
V = Vo + ey where ev < Vo, u = a0 + E,  where E, < uo, r = ro + e,, where e,, < TO, and 
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s = so + es where es < so. After substituting these relations into ( 1 )  and ( 2 )  we get 

where $(x, t )  is a given function of x and t. 
These equations are independent linear differential equations of the first order. 

The coefficients of these equations can be calculated (see Courant & Friedrichs 
1948) by the use of the simple wave relations (see figure 1).  We get 

. ,  
We thus obtain 

1 +-- = -- k -  [ (") - (k  - 3 )  -so- 2(k - 1 )  SO' $(x, t ) ,  X aer x aer 
at t a x  k+i t t 
- (7) 

(8) 
1 3 - k z  4 ( k - l )  

k -  [ (")2- ( k -  3)-sO- X 2(k- 1)sO' $(x, t ) .  
k + l  k + l  t t 

1 ,  

Integrating the first equation, we find the characteristics are 

;c 
- = c = const., 
t 

and along these characteristics 

( k  - 3)  so - - 2t (k - 1 )  so'] Y + C, (;) , 
X 

(9) 

where 

and the C, are constants which take a different value on each characteristic a. 
This value we can calculate from the condition that for x = L + 0, er = 0. 

Y = Y(x, t )  = I+(., ;) dx, 

Assuming for simplicity that Y = Y(x), we get 

2t 
- - (k  - 3)  SO - - (k  - 1 )  

X 

* (11 )  
k - 1  L 2t 

L 
(k-3)so--(k- 1)s" +- k +  1 [t- 

If, for the sake of example, A/A,  = e K X ,  where K is constant, then 

(k - 1 )  so'] K.  
k - 1  X - L  2 t ( ~ - L )  

E =-- - 
k+l[ t + XL 

A solution in closed form for er could also have been obtained for a non-centred 
wave. Integrating equation (8), we find the P-characteristics of the centred wave 

where C, = const. along each p-characteristic. 
(13) are given by x = C t'3-k)l(k+l)- 2sOt, 1 
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FIGURE 1. Propagation of a centred rarefaction wave through a duct of slowly variable 
cross-section. (a) Subsonic flow behind the rarefaction wave. ( b )  Supersonic flow behind 
the rarefaction wave. 

It is of interest that we get a wave in which the characteristics as given by 
equations (9) and (13) are the same as for a simple wave (in a duct of constant 
cross-section). To the present approximation, the a and /3 characteristics 
coincide for waves in a duct with constant or slowly varying cross-section. 

The change of e8 along the /3-characteristics is given by 

=-- ([C1t[2(1--k)/(k+l)l - 2,3012 - (k - 3 )  [C1t[2(k-1)l(k+lll - 3&'] so - 2(k  - 1) so'} $at. 
* k+l 

(14) 
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For simplicity we shall evaluate this integral only for a special duct with shape 

A = AOe-, (15) 
prescribed by 

where K = const. 
We get, after substituting for C, from (13), 

k - 1  x+2sOt k + l S O  K+C 
k + l  (2+ 2sOt) [ (5-3k)t - -- 3 - k  ]. 8’ 

e =-- 

where C, is constant along the P-characteristic and can be calculated from the 
boundary conditions on the front of the wave; namely, V = 0, a = a,, es = 0 for 
x/t = a,. Then we obtain 

(17) 
2Ka3k + 1)  t c -  

8 - (5-3k)(3-k)’  

Equations (12) and (16) give the values of the deviation of the flow parameters 
from the simple wave solution in region I prescribed by x > L (see figure 1) and 

X X 
2t2-, 

a, a, + +(k + 1) V; 

where V! is the velocity on the back of the centred wave. In  the special case when 
I V!l > a!, point B (figure 1 b )  is at infinity. 

For the case of subsonic flow behind the centred wave, there is a reflected wave- 
region I11 (see figure 1 a). In  this region, e7 = 0 but es =+ 0. Along the 8-character- 
istics, es = C,  = const. The values of C,  are the same as at the points of inter- 
section of the /?-characteristics with the vertical line x = L. These values are 
given by equations (16) and (1 7 )  

For an arbitrary point (L, t,,), by the use of equation (13), the equation of the 
characteristic at the back of the centred wave, i.e. x/t = V! + a;, and equation 
(25 ) ,  we can calculate for given t the corresponding co-ordinate x lying on the 
8-characteristic which intersects the vertical line x = L a t  the point (L, tAB):  

For the case of subsonic flow behind a centred wave ( 1  V!] < a!), we can cal- 
culate the flow parameters in region I1 (figure 1 a )  from the system of equations 
similar to (3) and (4) but with constant coefficients 
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Then we find from equation (20) that the a-characteristics are straight lines 

629 

x = (Vp+ap)t+x,,, ( 2 2 )  

where xoor is the co-ordinate of the point of intersection of the a-characteristic 
with the x-axis. Along these characteristics 

where C, is a constant along each characteristic which can be calculated from 
the boundary condition er = 0 when x = L. Then we get 

The characteristics of equation (21) can be written in the form 

x = (v;-ag)t+xop (25 )  

where xog is the co-ordinate of the point of intersection of the P-characteristic 
with the x-axis. Along these characteristics, we have 

VO a0 
2 

E, = - X K t + C p  

The constants Ca are calculated from the compatibility conditions for the 
solutions (16) and (26 )  along the rear boundary of the centred wave in regions I 
and 11. We then have for 

xb = (vg + a;) t,, 
the relation 

k+l a; k + I s o  2atK(k- 1) 
K I  k -15-3k  3-k 1. ( 5 - 3 k ) ( 3 4 .  

VOaO 
- y K t b + C p  = -a:t, 

The co-ordinates (x, t )  of an arbitrary point lying in region I1 on the P-charac- 
teristic through the point (x,, tb) on the back of the centred wave satisfy 

so that 

Then finally we have 

x- (Vg -a;) t 
2a; 

t ,  = 

VOaO K ( x -  Q t )  2(k+ 1 )  (a:- a " l + ( k - l )  O Vpa;]. (27 )  

3 -k  ( 3  - k) a0 [ 5-3k 
E,  = --Kt+ 

Equations (24) and (27) then give the flow parameters in region I1 (figure 1 a). 
In  region IV (figures l a ) ,  er = 0, and es takes a constant value along P-charac- 

teristics which is equal to the value at the points of intersection of the /3-charac- 
teristic with x = L. Then in region IV, we get 

x - L  
Vg - a4 

L -  v;t+--- vp) 
+ (k- 1 )  Vpa;]. (28 )  

(3  - k) a: 
+ 
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When the /I-characteristics reach the moving piston, the boundary condition 
along the piston path, x/t = Va = const, gives err = er-e8 = 0. Then we have a 
reflected wave (region V on figure 1 a)  in which the a-characteristics are given by 
dx/dt = Vg +a:, and along which er = const. The value of er is equal to the value 
of for the /I-characteristic passing through the point where the a-characteristic 
meets the piston path. 
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FIGURE 2. Comparison of the present method with a step-by-step calculation of the 
velocity and velocity of sound in a centred wave along a tube of variable cross-section 
given by A/Ao = e1.384(x1L), when a,t/L = 2. ---- , Step-by-step calculations; ---, 
linearized theory ; -, simple wave. 

A comparison of the present method with step-by-step calculationst using 
equations (1) and (2) is shown in figures 2 and 3 for K = 1.384 and k = 1.4, and 
for tLja, = 2 and tL/a, = 2.5. The solid lines correspond to the simple wave 
solution for A = A0 = const. 

We thus find reasonably good results for a duct of non-slowly varying cross- 
section, in which K has a value such that when 5 = 5, the cross-section area of 
the duct increases four times (A/& = 4). 

3. The boundary-layer influence on the simple wave 
This problem was discussed by Owczarek (1956), who supposed that the 

boundary layer caused only surface friction and a production of entropy. In  
fact, the boundary-layer influence is more complicated, because of the change in 

t These computations were made by P. Kijkowski. 
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the effective duct cross-section area. A more detailed consideration, based on 
the three principal equations of mechanics, of the boundary-layer influence in 
the special case of shock-tube flow was given by Rohiszewski (1959). Below, we 

I 1 1 I I I ' I  
0 6  0.8 1.0 1.2 1.4 1 6  1.8 2 0  0 '  

5 = x/L 

FIGURE 3. Comparison of the present method with a step-by-step calculation of the 
velocity and velocity of sound in a centred wave along a tube of variable cross-seeti011 
given by A / A ,  = e1.384(x/L), when a,t/L = 2.5. ---- , Step-by-step calculations; ---, 
linearized theory ; - , simple wave. 
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FIGURE 4. Boundary-layer influence on unsteady flow in a duct of 
slowly varying cross-section. 

shall generalize this theory for the arbitrary one-dimensional unsteady flow. 
We shall assume that the boundary-layer thickness is very small in comparison 
with the duct diameter, and that the pressure is constant in each cross-section. 
We then apply the three basic equations of mechanics to the control volume 
between sections I and I1 of the tube (figure 4) of variable cross-section. We 



632 Jan Robciszewski 

assume the variation of duct cross-section to be a small quantity of the same 
order as the variation of boundary-layer thickness. 

The conservation of mass gives 

where u and p are the velocity and density in a given cross-section. We note that 

where V and ,E are constant in a given cross-section and are the velocity and 
density outside of boundary layer, and 

In  particular 8,, = 8” is the well-known boundary-layer displacement thickness. 
Finally we gett for x, --f xII, 

~p -av 
- + p -  = - p  ~t ax 

 in^ 4 p (  as* aslo) +- v-+- . 
Dt d ax at 

The momentum equation gives 

pV2 
where C,, is the surface friction coefficient (7 = TCf,) .  Using equation (29) 

we get for xI -+ zI1, 

(31) 
DV __ +=- lap =-A___ 2 c  vz 4v2a(s*-s1,) -- 4va(8,,-6*) 
Dt pax d d ax d at * 

The energy equation gives 

u2 E p i - -  L__ 

O -  2 + E 4  
where 

is the stagnation enthalpy, 
u2 1 p 
2 k - l p  

E=-+-- and qw 

is the heat flow through the duct wall per unit time per unit area. Using equations 
(29) and (31), and 

#-So = In-- P 
QV F k  

t Assuming A = &d2. 
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we get for xII + xI, 

2 ag* 2-+--+++Ct, as,, 1 as,, as,, - %I,('-') (32) ] pa% * 

---- v at ax v at a s  
Using equations (29), (31) and (32), we can express the coefficients F,, F, in 

equations (1) and (2) as 

We assume that the boundary-layer parameters Sij, crw and q, are given on 
the basis of the solution of the boundary-layer equations with the velocity in 
the duct given by the ideal flow solution. This is a good approximation when the 
boundary layer is thin. For the case when it is not so, we can apply the method of 
successive approximation. 

In  particular, by making use of the theory of the non-steady boundary layer 
caused by a simple wave and of equation (33), it is possible to compute (as before) 
the boundary-layer influence on the centred wave. For example, it is possible 
to employ Backer's (1957) results which are obtained by the assumption of 
constant pressure, density and temperature in a given cross-section. In this 
case, using a very close approximation to Backer's formula (43) ( g  = 47+2q2) 
for laminar flow and Rayleigh's approximation for turbulent flow, we obtain the 
solution in closed form for the centred wave. All the boundary-layer character- 
istics in this case depend in a simple manner of 7 = 1 - z/a,t and t. 

The integrals on the right-hand side of the equations obtained, which are 
similar to equation (la), can be solved in closed form. Backer's results can be 
used only for the weak waves (a small velocity of flow) because of the assumption 
of constant density in a cross-section. 

For a more general solution of the problem discussed it is necessary to solve 
the unsteady compressible boundary layer, with the assumption of a simple 
wave potential flow and a heat conducting duct wall. 
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